If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6t^2+7t+2=0
a = 6; b = 7; c = +2;
Δ = b2-4ac
Δ = 72-4·6·2
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-1}{2*6}=\frac{-8}{12} =-2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+1}{2*6}=\frac{-6}{12} =-1/2 $
| -13(-3+n)=286 | | 9q^2+6q+7=0 | | 32x^2-64x+32=1 | | 5t^2+4t+4=0 | | 7x+6=4x+1 | | 3x+2=(2x+13)3 | | 6d-11/2d=2d-13/2 | | Ix/3=12 | | x-6=3x-20 | | 5x+23=7x+9 | | 25+25=x-83 | | 19x=351 | | (8x+28)+(11x-19)=360 | | 0=16t^2+590t | | (4x-6)=18 | | 0=16t^2+590 | | 23=m+5 | | 3x-5(x-2)=-6=2x-12 | | 9^(x+3)=27 | | 0=-16t^2+610t | | (4x+10)^((1)/(4))-(7x+9)^((1)/(4))=0 | | 3^2m-1=20 | | 7x-5÷4=56 | | 2=x-19.5/4.5 | | 25*x^2+6025*x-500=0 | | (x)=x(x^2+3600) | | (7+x)2=14x | | 2x(2)+10=60 | | 0.3(p-4/3)=5-0.6p | | (x)=x(2x+3600) | | -3/8p=6 | | 2+b-7=89 |